
Creative Coding and Visual Portfolios for CS1
Ira Greenberg

Center of Creative Computation
Dept. of Comp. Sci. & Engineering

Southern Methodist University
Dallas, TX (USA)

igreenberg@smu.edu

Deepak Kumar
Department of Computer Science

Bryn Mawr College
Bryn Mawr, PA (USA)

(1) 610-526-7485

dkumar@brynmawr.edu

Dianna Xu
Department of Computer Science

Bryn Mawr College
Bryn Mawr, PA (USA)

(1) 610-526-6502

dxu@brynmawr.edu

ABSTRACT
In this paper, we present the design and development of a new
approach to teaching the college-level introductory computing
course (CS1) using the context of art and creative coding. Over
the course of a semester, students create a portfolio of aesthetic
visual designs that employ basic computing structures typically
taught in traditional CS1 courses using the Processing
programming language. The goal of this approach is to bring the
excitement, creativity, and innovation fostered by the context of
creative coding. We also present results from a comparative study
involving two offerings of the new course at two different
institutions. Additionally, we compare our results with another
successful approach that uses personal robots to teach CS1.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education-computer science education.

General Terms
Design, Experimentation.

Keywords
CS1, computer science, education, pedagogy, creative coding, art,
visual portfolio, Processing.

1. INTRODUCTION
Many theories have been put forward to explain the waning CS
enrollments. While there is little agreement on a single cause or
solution, there is some consensus that Computer Science has an
image problem [Yardi & Bruckman 2007, Guzdial 2009]. The
most wired and computationally involved student population ever
perceives Computer Science as tedious, antisocial and irrelevant.
A lagging response by CS departments to modify less relevant
pedagogical approaches, perhaps too fettered to the mathematical
and engineering legacy of the discipline [Hillberg & Meiselwitz
2008] does little to improve the image.

The contextualized approach to introduce students to Computer
Science has gained momentum and recognition in recent years.

Notable efforts include media computation [Guzdial 2004], robots
[Summet et al 2009], games/animation [Moskal et al 2004,
Bayless & Stout 2006], and music [Beck et al 2011]. Arguments
in favor of teaching CS1 in context are persuasive, and may
provide a much needed trigger for sustained student interest well
beyond the introductory courses [Kay 2011, Guzdial 2010].

We present the design and development of a new context to
teaching CS1, using generative art and creative coding. Over the
course of a semester, students create a portfolio of aesthetic visual
designs that employ basic computing structures typically taught in
traditional CS1 courses using the Processing programming
language [Processing Group]. The goal of this approach is to
present computing as a medium of creativity and nurture an
accessible, engaging environment that attracts a modern, diverse
student body that appreciates the excitement, creativity, and
innovation that computing brings.

In this paper we present results from a comparative study
involving two parallel offerings of the new course at two different
institutions, Bryn Mawr College and Southern Methodist
University (SMU). Additionally, we compare our results with
another successful approach that uses personal robots to teach
CS1.

1.1 Related Work
There have been various attempts at incorporating graphics and
creativity in introductory computing courses, one of the earliest
being Niguidula & van Dam [N&vD 1987]. Perhaps the most
successful efforts to date are those of Guzdial using media
computation as a context [Guzdial 2004, 2009, Guzdial &
Ericsson 2006] and using Alice to introduce non-majors to
computing [Cooper et al 2003, Moskal et al 2004]. These

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’12, February 29–March 3, 2012, Raleigh, NC, USA.
Copyright 2012 ACM 978-1-4503-1098-7/12/02…$10.00.

Figure 1: Student artwork in Bryn Mawr and SMU classes

approaches have since been expanded into CS1 courses with
documented success [Balter & Bailey 2010]. Other notable efforts
in this arena include a course taught by Prof. Ursula Wolz (at The
College of New jersey) on Introduction to Interactive Multimedia,
the Artbotics project which also uses robotics to engage students
in creating creative artifacts [Yanco et al 2007] and the
Computational Thinking course at Colby College taught by
Professor Bruce Maxwell, which uses Python and Turtle Graphics
for 2D graphics as a medium of creativity, expression,
communication and experimentation. Despite its appeal, the
concept of generative art and creative computing are relatively
underutilized in creating introductory computing curricula.

Besides Processing there are several other projects that are
focused on creating design and art using computational techniques
[VVVV, PD, Zimmer 2009, Scratch, Resnick 2007a, 2007b,
Maloney et al 2008, Monroy-Hemandez & Resnick 2008,
Panda3D, Arduino, Wiring]. Most of these projects either build on
the context of robotics and creativity, or are still in early
development stages (still in alpha-releases). Their uses in formal
computing education are mostly localized to the development
groups and their institutions or their immediate communities (not
in Computer Science). However, they represent an exciting
direction for bringing computing to a much larger community of
students and practitioners.

2. CREATIVE CODING & PROCESSING
The concept of creative coding offers a different conceptual lens
to the task of programming and computing. Our approach is
firmly grounded in the innovative and rigorous explorations of the
Aesthetics + Computation Group, headed by Prof. John Maeda, at
the MIT Media Lab [Maeda 1999, 2004]. Maeda’s group explored
computation, including pedagogy, from the context of the arts
classroom. We believe that the lessons learned and ultimately
tools that have been created have a very direct bearing on the
discussion of CS pedagogy and ultimately enrollment and
retention. John Maeda is both a formally trained artist and
computer scientist, who pioneered an approach to “Creative
coding” that radically recontextualized computer code–from an
applied math notation to a creative medium, on par with charcoal,
paint, clay, etc. Lessons learned from these explorations led to the
design of the Processing language [Reas & Fry 2006, 2007].

Processing is a robust
and full-featured
language that has use
both in the classroom
and beyond; it is used
widely in industry
and growing quickly
in popularity. Factors
contributing to its
growing popularity
include: it is
integrated into Java;
it is stable; it has a
very flat learning
curve; it has a
simple, intuitive, and
easy-to-use IDE; it is

fun to work with; it is open source and easily extendable; and runs
on all popular computing platforms.

Processing was designed for the construction of 2D and 3D visual
forms. Its IDE is light-weight, but well-suited for the kind of rapid
proto-typing needed for dynamic visual work. Novice
programmers respond well to programming environments where
small snippets of code can be quickly tested and minimal effort is
needed to run code. Despite the ease with which beginners take to
Processing, it is a full featured programming language capable of
rendering stunning graphics and animations, ones that rival the
capabilities of OpenGL and other standard Graphics libraries,
with little learning curve and much less actual code. For example,
Figure 2 shows a complete Processing program [Greenberg 2007]
which generated the sketch in Figure 3. It comes as no surprise
that Processing is being embraced by academia–from departments
of Art and Design and Architecture; to the Sciences, for
visualization; to computer science departments, to teach CS1. In
addition, Processing is built on top of Java, but uses a simplified
syntax and graphics programming model. It is fully integrated in
that straight Java code can be embedded freely in any Processing
program/sketch, and every Processing program/sketch can be
exported to a Java applet as well as a Java application for Linux,
Mac and Windows.
3. COURSE DESIGN
Our pilot offering consisted of the following topics, in the order of
presentation during the semester:

Course Introduction: What is computing? Algorithms,
programming. What is creative computing? Creative computing
examples.

Drawing Primitives: point, line, shapes, color, curves, text,
images, 3D objects.

Interactivity and Simulation: I/O, mouse and keyboard events,
animation and gaming, simple physics.

Control Structures: Syntax, variables and data types,
expressions, conditionals, loops.

Functions: Procedural abstraction, modularity, parameters, return
values.

Mathematical Concepts: Coordinate systems, polar-coordinates,
basic trigonometry and geometry.

Arrays & Objects: Introduction to reference types; arrays,
ArrayLists and indexing; introduction to OOP, including
encapsulation, inheritance and polymorphism.

Creative Coding Concepts: Transformations, including translate,
rotate and scale; iteration and randomization; algorithmic
drawing; introduction to image processing.

Text, Data & Visualization: Strings, displaying text, fonts; file
I/O; introduction to data mining; acquiring, parsing, filtering and
cleaning data; visualization design.

Each topic was structured around 1-2 weeks of lectures and
laboratory exercises followed by a creative coding assignment.
Figure 1 shows some example student work. Over the course of a

Figure 3: Nematode Sketch (see Figure 2 for program listing)

Figure 2: Nematode program

semester students built a visual portfolio of their work, exhibited
it in a public website (www.openprocessing.org) where they could
also watch and interact with the work of others, and learned the
core concepts in computing. A larger collaborative project (virtual
fish tank) between the students of the two partner institutions
Bryn Mawr College and SMU was given mid-semester.
Instructors provided an interface (the fish tank) where students
shared code (fish class, physics class, etc) and learned team
programming. The course culminated in a final design project
where students chose, designed, and built a data visualization
artifact of their own interest. These design projects ranged from
visualizations of box office movie earnings, weather data,
restaurant reviews (Zagat), aural data (music), demographics, etc.
Some students also built games and animations.

As we continue to develop the structure of such a course we are
examining ways in which we can reorganize the course content,
both from design and computing perspectives. We are currently
engaged in creating a set of structured instructional materials that
reflect our course design. These materials will be tested in the
coming year and also made available for wider adoption.

3.1 Assessment
Assessment of the students included traditional instruments such
as quizzes, exams and presentations and also critiques. The
critique process comes out of the arts classroom, where students
and the instructor openly discuss individual projects. In the arts
classroom, student work is assessed primarily through a formal
analysis of design and aesthetic principles. In the Processing CS1
classroom, discussions included both technical aspects of the
projects, such as a review of the source code, and also basic
aesthetic issues. The aesthetic issues, as listed in any introductory
design book [Rowena & Hannah 2002], included factors such as
symmetry, repetition, contrast, balance, focal point, rhythm,
emphasis, movement, pattern, variety, unity, etc.

One of the main benefits of utilizing the critique process was
increased student engagement. Students were consistently
motivated to improve their programs following the critique. This
invariably led to a rethinking of both technical and aesthetic
factors. In addition, students were motivated to auto-didactically
learn beyond the course curriculum to extend their classroom
projects.

3.2 Statistics and Early Results
In the fall semester of 2010, two CS1 classes were offered, one at
each partner institution involving a total of 39 students (23 at
Bryn Mawr and 16 at SMU). Both classes were capped and pre-
registration numbers far exceeded available seats (closed at 45
when the cap was 23) at Bryn Mawr and lotteries were conducted.
In the spring semester of 2011, Bryn Mawr offered two sections
(each capped at 23) of the Processing-based CS1 due to demand,
again both sections required lotteries. Bryn Mawr was not able to
offer more sections due to staffing constraints.

The success of the Processing-based CS1 has led SMU to start
offering an entire curriculum, including a three-course
introductory sequence starting with a Processing-based CS1 and a
new minor and major in creative computing. A new graduate
program is also being built.

4. EVALUATION
Survey results from our pilot classes show that our approach is
successful and appears particularly appealing to women. Note the

enrollment trends (quoted in section 3.2) and survey results for
Bryn Mawr, an all-women's institution.

4.1 Cross-institutional Comparisons
Identical surveys were collected from pilot classes at both Bryn
Mawr College and SMU, which are very different institutions.
Bryn Mawr is a small all-women’s liberal arts college with 1,300
undergraduate students while SMU offers a more conventional CS
and Engineering program with a much larger student body
(11,000 total with 6,000 undergraduates). SMU also offers an
Introduction to CS for Non-majors (CS0) while Bryn Mawr does
not, making SMU’s CS1 less likely to attract non-majors,
particularly non-STEM majors. Bryn Mawr’s CS1 tends to be
90% non-majors or undecided.

In addition, near identical surveys were also given to traditional
Java-based CS1 sections running concurrently at SMU as a
control, with two art and/or Processing specific questions taken
out. A total of 21 Bryn Mawr Processing CS1 students, 11 SMU
Processing CS1 students and 39 SMU non-Processing Java-based
CS1 students returned the surveys for the Fall 2010 semester. We
had additional data collected from the Spring 2011 sections, but
we did not have sufficient time to perform the data analysis in
time for this paper. We also did not calculate Chi-square because
these results are early and we have a relatively small sample size.

From the Fall 2010 data we observe the following:

• Students in the Processing sections appear more positively
inclined to take additional CS courses. 42.86% at Bryn Mawr
and 45.45% at SMU said yes to another CS class versus
28.21% non-Processing students at SMU (see Figure 6). We
would like to point out the significance of the 42.86% at Bryn
Mawr, where the majority of students in the CS1 are non-
majors taking the class to fulfill the quantitative requirement of
the college and thus the 'yes' is unlikely to be influenced by
required course sequences in the major or minor. This is borne
out by the answers to whether they expect to ever have to write
another program in any language after this class. 61.9% of the
Bryn Mawr students said no (see Figure 8). Also interesting
were the answers to why they took this class. 76.77% of Bryn
Mawr students said they were just checking to find out what
CS is all about, versus 27.27% at SMU, which again clearly
indicates SMU required course sequences.

• Students in the Processing sections are more likely to spend
extra time on a homework assignment for "fun". 85.71% of
Bryn Mawr students and 72.72% of SMU students reported
spending extra time on at least one homework because it was
cool, versus 30.77% non-Processing students at SMU (see
Figure 4).

• Students in the Processing sections indicate strong tendency to
talk to friends not in the class about the class. 80.96% at Bryn
Mawr and 65.64% at SMU agreed or strongly agreed.

• Students in the Processing sections at both institutions disagree
that CS and programming are the same thing. 52.38% at Bryn
Mawr and 54.55% at SMU disagreed or strongly disagreed.

• SMU students exhibit stronger confidence in knowledge and
technical knowhow (compared to peer in class) than Bryn
Mawr students. Although Bryn Mawr's distribution
approximates the normal curve, possibly influenced by the all-

female student body and is likely also a more accurate
depiction of relative knowledge of peers.

• SMU students also exhibit stronger confidence in math and
science abilities, which is partly explained by the higher
number of intended CS majors in the class. It may also have a
strong correlation to gender rather than actual ability.

• Students at both institutions are quite positive about technology
and trying new tools/products, with the SMU students
indicating stronger tendencies.

4.2 Comparing with Another Contextualized
Approach (Robots)
The Computer Science Department at Bryn Mawr College was
part of the IPRE institution [Blank 2006, Kumar 2008, Summet et
al 2009] that developed the personal robots approach to CS1. We
have various data collected on other contextualized approaches
from Bryn Mawr and Georgia Tech during the robot-based CS1
endeavors and this forms the basis for comparison. Different
surveys were given out as the IPRE project evolved and they did
not all contain questions comparable to our surveys. In this
particular paper, we are comparing to survey data collected in the
Spring 2007 (22 returned surveys) [IPRE 2007] and Spring 2008
(24 returned surveys) classes of CS1 with robots taught at Bryn
Mawr, where equivalent or near equivalent questions were asked.
Those were the first and second years of the IPRE project.
We would like to point out that this comparison is not intended to
show which contextualized approach is better or worse. While the
authors are reassured that the data supported that the new
art/creative coding context is doing at least as well as another
more established context, the important point is that bringing
context, any context to CS1 makes a dramatic difference for
student motivation and engagement on all levels, and we direct
the readers’ attention to the contrast of both contextualized
approaches with the traditional approach.
The positive effects on student motivation demonstrated by other
contextualized approaches continued consistently in our
art/creative coding-based approach. Similar to results obtained
from CS1 with robots, students showed strong tendency to spend
extra time on assignments because they enjoyed it (see Figure 4).

Figure 4: % of students responding Agree or Strongly Agree
As shown in Figure 5, students responded very favorably to the
context of art and more found it appealing than robots. Note in
Figure 4, the third data point was for the question "I enjoyed using
the robot in class". We do not have a comparison data point for

the traditional approach as this is a context-specific question and
was taken out in the surveys given to the traditional sections.

Figure 5: % of students responding Agree or Strongly Agree

Figure 6 shows that the art/creative coding context was very
effective in initiating student interest and influencing students to
consider taking a further course in Computer Science.

Figure 6: % of students responding Yes

Lastly, Figure 7 shows that 42.86% Bryn Mawr students indicated
that they wrote additional Processing programs not assigned for
this class, compared to 37.5% of students saying so for the robot
approach. The SMU responses were comparable to the robot
approach, at 36.36%. 28.21% of the traditional section responded
Yes.

Figure 7: % of students responding Yes

Correlated with the responses to the question shown in Figure 8,
we would like to point out that 61.9% of the Bryn Mawr students
did not expect that they would ever have to write another program

in any language after this class (likely non-STEM majors), yet the
same Bryn Mawr students also showed the most interest in
creating self-initiated programming projects outside of class. We
believe this is a particularly encouraging sign that the art and
creative coding context attracts and motivates women.

Figure 8: % of students responding Yes

5. FUTURE WORK
We continue to offer Processing-based CS1 in the 2011-2012
academic year at both institutions, using the opportunities to
refine our course design and accumulate more course materials
and student feedback. As we collect more survey data and build a
more significant sample size, we will run more statistical analysis
and look at cross-institutional differences as well as gender
differences more closely. We will be conducting longitudinal
studies to look at retention and enrollment numbers in CS2 and
beyond. We are very excited about the development of the
creative computing curriculum at SMU, which to our knowledge
is the first of its kind nationwide.
As we continue to develop more course materials, they will be
made freely available via our website. We are also writing a
textbook for CS1 that showcases our approach and we are
planning to wrap it up in time for the Spring 2012 classes. We
hope that our dissemination efforts will attract signification
adoption in peer institutions.

ACKNOWLEDGMENTS
The authors would like to thank Douglas Blank, Steve Cooper,
Jennifer Burg, Eric Eaton, Ben Fry, Mark Guzdial, Darrel Ince,
James Kiper, John Lee, Bruce Maxwell, Suku Nair, Jeffrey
Nyhoff, Mark Russo, Daniel Shiffman, Allison Tew, Eugene
Wallingford and Ursula Wolz for their support, encouragement,
and assistance in several phases of this project. This project is
supported in part by the National Science Foundation award
DUE-0942626, Bryn Mawr College and Southern Methodist
University and National Science Foundation award CCF-
0939370.

6. REFERENCES
[1] Arduino. Web site: www.arduino.cc/
[2] Balter & Bailey 2010. Olle Balter and Duane Bailey.

Enjoying Python, processing, and Java in CS1. ACM
Inroads, V(1)No.4. ACM Press, December 2010.

[3] Bayless & Stout 2006. Jessica D. Bayless and Sean Strout.
Games as a “Flavor” of CS1. In proceedings of SIGCSE
2006. ACM Press, 2006.

[4] Beck et al 2011. Robert E. Beck, Jennifer Burg, Jesse M.
Heines, and Bill Manaris. Computing and Music: A
Spectrum of Sound. Special Session, SIGCSE 2011. Dallas,
TX, March 2011.

[5] Blank & Kumar 2003. Douglas Blank and Deepak Kumar.
Patterns of Curriculum Design. In Cassel & Reis (editors),
Informatics Curricula and Teaching Methods. Kluwer
Academic Publishers/IFIP, 2003.

[6] Blank 2006. Douglas Blank. Robots make computer science
personal. Communications of the ACM, 49(12), December
2006.

[7] Cooper et al 2003. Stephen Cooper, Wanda Dann, Randy
Pausch. Teaching Objects-first in Introductory Computer
Science. In Proceedings of SIGCSE 2003. ACM Press 2003.

[8] Greenberg 2007. Ira Greenberg. Processing: Creative
Coding and Computational Art. Friends of Ed, 2007.

[9] Guzdial 2004. Mark Guzdial. Introduction to computing and
programming with Python: A Multimedia Approach.
Prentice-Hall, 2004.

[10] Guzdial & Ericsson 2006. Mark Guzdial and Barbara
Ericsson. Introduction to computing and programming with
Java: A Multimedia Approach. Prentice-Hall, 2006.

[11] Guzdial 2009. Mark Guzdial. Teaching Computing to
Everyone. Communications of the ACM (CACM) 52(5):31-
33. ACM Press, May 2009.

[12] Guzdial 2010. Mark Guzdial. Does Contextualized
Computing Education Help?. ACM Inroads, V(1)No.4. ACM
Press, December 2010.

[13] Hillberg & Meiselwitz 2008. J. Scott Hilberg, Gabriele
Meiselwitz, Undergraduate fluency with information and
communication technology: perceptions and reality, In
Proceedings of the 9th ACM SIGITE conference on
Information technology education, October 16-18, 2008,
Cincinnati, OH, USA

[14] IPRE 2007. Institute for Personal Robots in Education. IPRE
2007 Annual Report. Institute for Personal Robots in
Education (IPRE), 2007.

[15] Kay 2011. Jennifer Kay. Contextualized Approaches to
Introductory Computer Science: The Key to Making
Computer Science Relevant or Simply Bait and Switch?. In
Proceedings of SIGCSE 2011. ACM Press, 2011.

[16] Kumar 2008. Deepak Kumar (editor). Learning Computing
With Robots. Institute for Personal Robots in Education
(IPRE), 2008.

[17] Maeda 1999. John Maeda. Design By Numbers. The MIT
Press, 1999.

[18] Maeda 2004. John Maeda. Creative Code. Thames &
Hudson Press, 2004

[19] Maloney et al 2008. Maloney, J., Peppler, K., Kafai, Y.,
Resnick, M., and Rusk, N. (2008). Programming by Choice:
Urban Youth Learning Programming with Scratch. In
Proceedings of SIGCSE 2008. ACM Press 2008

[20] Monroy-Hemandez & Resnick 2008. Monroy-Hernández, A.
and Resnick, M. (2008). Empowering kids to create and
share programmable media. Interactions, March-April 2008.

http://www.arduino.cc/

[21] Moskal et al 2004. Barb Moskal, Deborah Lurie, Stephen
Cooper. Evaluating the Effectiveness of a New Instructional
Approach. In Proceedings of SIGCSE 2004. ACM Press,
2004.

[22] Niguidula & van Dam 1987: David A. Niguidula and
Andries van Dam. Pascal on the Macintosh: A Graphical
Approach. Addison Wesley, 1987.

[23] Panda3D. Web Site: www.panda3d.org.
[24] PD. Pure Data. Web site: www.puredata.info.
[25] Processing Group. Main portal for all things Processing. Web

site: www.processing.org.
[26] Resnick, M. (2007a). All I Really Need to Know (About

Creative Thinking) I Learned (By Studying How Children
Learn) in Kindergarten. In Proceedings of the SIGCHI
Conference on Creativity and Cognition, Washington, D.C.

[27] Resnick, M. (2007b). Sowing the Seeds for a More Creative
Society. In Learning and Leading with Technology, 2007.

[28] Reas & Fry 2006. Casey Reas and Ben Fry. Processing Code:
Programming within the Context of Visual Art and Design.
In Aesthetic Computing. Paul A. Fishwick (editor). The MIT
Press, 2006.

[29] Reas & Fry 2007. Casey Reas and Ben Fry. Processing: A
Programming Handbook For Visual Designers and Artists.
The MIT Press, 2007.

[30] Rowena & Hannah 2002. Rowena Kostellow and Gail
Hannah. Elements of Design and the Structure of Visual
Relationships. Princeton Architectural Press, 2002.

[31] Scratch. Web Site: www.scratch.org.
[32] Shiffman 2008. Daniel Shiffman. Learning Processing: A

Beginner’s Guide toProgramming Images, Animation, and
Interaction. Morgan Kauffman Publishers, 2008.

[33] Summet et al 2009. Jay Summet, Deepak Kumar, Keith
O’Hara, Daniel Walker, Lijun Ni, Doug Blank, Tucker
Balch. Personalizing CS1 with Robots. In Proceedings of
ACM SIGCSE 2009. March 2009.

[34] VVVV. A Multimedia Toolkit. Web site: www.vvvv.org.
[35] Wiring. Web site: www.wiring.org.co/
[36] Yanco et al. Holly A. Yanco, Hyun Ju Kim, Fred G. Martin

and Linda Silka . Artbotics: Combining Art and Robotics to
Broaden Participation in Computing. 2007 Workshop on
Research in Robots for Education at the Robotics Science
and Systems. 2007.

[37] Yardi & Bruckman 2007. Sarita Yardi and Amy
Bruckman.What is computing? bridging the gap between
teenagers' perceptions and graduate students' experiences. In
Proceedings of the Third international Workshop on
Computing Education Research (Atlanta, Georgia, USA,
September 15 - 16, 2007). ICER '07.

[38] Zimmer 2009. Frank Zimmer. loadbang - Programming
Electronic Music in Pd. Wolke Publishing House, 2009.

	1. INTRODUCTION
	1.1 Related Work

	2. CREATIVE CODING & PROCESSING
	3. COURSE DESIGN
	3.1 Assessment
	3.2 Statistics and Early Results

	4. EVALUATION
	4.1 Cross-institutional Comparisons
	4.2 Comparing with Another Contextualized Approach (Robots)

	5. FUTURE WORK
	ACKNOWLEDGMENTS
	6. REFERENCES

