
Updating Introductory Computer Science
with Creative Computation

Dianna Xu
Bryn Mawr College

Bryn Mawr, PA
USA

dxu@brynmawr.edu

Ursula Wolz
Bennington College

North Bennington, VT
USA

ursulawolz@bennington.edu

Deepak Kumar
Bryn Mawr College

Bryn Mawr, PA
USA

dkumar@brynmawr.edu

Ira Greenberg
Southern Methodist University

Dallas, TX
USA

igreenberg@smu.edu

ABSTRACT
This paper1 reports on the results of a multi-year project in which
we identified essential pedagogy and curriculum for teaching
introductory computing courses focused on Creative Computation
using Processing. The curriculum aligns with a traditional ‘CS1’
approach as well as ‘AP CS A’, and goes well beyond ‘CS
Principles’ standards to teach foundations of computer science
and programming. We addressed the bridge between high school
and entry-level college curriculum in computer science (American
freshman high school to freshman college) and demonstrated how
algorithmic art provides a powerful vehicle for diverse student
populations within a broad range of pedagogical frameworks
ranging from traditional structured classrooms to inquiry-based
student-driven project labs. A secondary result is that instructors
require long-term engagement with mentors to extend their own
knowledge of computing, visual arts and appropriate pedagogy.

CCS CONCEPTS
• Social and professional topics • Professional
topcs➝Computing Education

KEYWORDS
CS AP; K-12 Computing; CS0; CS1; creative computation;
Processing.

1 INTRODUCTION
Creative Computation via Processing2[4,5] is a curriculum and
pedagogy that provides contextualized computing through which
a diverse student population can be introduced to foundational
principles of computer science and develop novice expertise as
programmers. Creative Computation is an emerging discipline
that combines theory and methodology from computer science
and engineering with aesthetic principles, creative practice and
pedagogical approaches from the fine and graphic arts. As a
highly interdisciplinary approach [3], it is an example of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
SIGCSE '18, February 21–24, 2018, Baltimore , MD, USA © 2018 Association for
Computing Machinery. ACM ISBN 978-1-4503-5103-4/18/02…$15.00
 https://doi.org/10.1145/3159450.3159539
2 Processing.org

contextualized computing that can serve to attract a diverse
student population to computer science. It draws from prior work
in media computation [6], robots [8,10], games/animation [11,13],
and music [2].

Our goal was to strengthen formative/introductory CS education
in high school and college by catalyzing excitement, creativity,
and innovation. The digital representation of data, access to
authentic sources of big data, and creative visualization
techniques are revolutionizing intellectual inquiry in many
disciplines, including the arts, social sciences, and humanities. We
assert that CS1 should be updated with contemporary, diverse
examples of computing in a modern context. This paper reports on
the success of adapting a curriculum and pedagogy, namely a
traditional CS1 scope and sequence, with an art studio pedagogy
in which students engage in highly individual artistic design. This
paper summarizes the qualitative evidence to date that Creative
Computation can be successfully integrated into a variety of high
school and undergraduate introductory courses.

Contextualized computing is increasingly being introduced into
American grades 6-11, articulating with the Common Core
Standards in Language Art. With few exceptions such as [12], the
primary emphasis is on computing principles applied to a
sampling of disciplines rather than immersion in an
interdisciplinary domain. Using a qualitative research approach
we studied the degree to which an established introductory
curriculum could be disseminated to high school and diverse
undergraduate institutions with a broad range of pedagogical
perspectives.

Through short-duration workshops and mini-grants, several
school instructors have adapted our Creative Computation
curriculum to courses including High School Pre-AP Computer
Science, AP CS Principles, AP CS A, High School Post-AP,
Community College Computer Science, Community College
Media Studies, Computer Science 0 (CS0), and Computer Science
1 (CS1). The institutions ranged from small private elite high
schools and colleges, to large urban public high schools and
universities, with course structure including teacher-centric
instruction and inquiry-based labs. The curriculum was
successfully adapted as modules in semester or yearlong courses,
as full courses that ranged from quarter, to tri, to semester and full
year duration, and one instance adapted the curriculum for an
online course for both high school students and undergraduates.

Reports from participant instructors in the workshops and mini-
grant program suggest that Creative Computation was universally
successful. This can be attributed to the objective to create a
flexible curriculum and pedagogy that can be adapted by
instructors, rather than requiring adoption of a highly structured
scope and sequence. This would seem obvious with the objective
of promoting contextualization. The remainder of this paper
documents how a traditional CS1 over-arching structure, that
emphasizes individual student creativity in the arts, can meet the
needs of a diverse constituency and provide meaningful
contextualization.

A secondary outcome was to provide further evidence that the
current popular model of short duration workshops with online
resources is insufficient for developing instructor expertise.
Contextualized computing in general and creative computation in
particular require interdisciplinary expertise. Providing sufficient
resources for such interdisciplinary professional development
remains an open question. The workshop and mini-grant
participants all requested more extended engagement in both in-
person and internet-based venues. We propose recommendations
for next-steps in adequately supporting professional development
specifically in Creative Computation in CS1, and for
contextualized computing in general.

2 CREATIVE COMPUTATION FOR CS1
Creative Computation showcases the theory of visual arts
rendered through computer code. In addition to a firm
grounding in programming principles, students learn essential
graphics operations such as transformations, iteration and
randomization, algorithmic drawing, animations, basic
physics-based simulations, and interactivity. Domains of
inquiry go well beyond commercial level media graphics (e.g.
what you might see on a web-page or mobile device) and
include creative use of image processing and emergent
systems. As a true blending of science and art, Creative
Computation requires understanding of and practice in the
intersection of analysis and aesthetics. For example, pixel-
based image manipulations require mastery of efficient
algorithms for data structures such as two and higher-
dimensional arrays; text and data visualization require a fusion
of artistic design and application of sophisticated data
structures and algorithms; rendering L-systems requires deep
understanding of recursion and recursive structures.

Creative Computation [4,5] requires students to engage in
artistic creative acts to practice and master essential concepts,
not only in media arts, but in computational thinking,
algorithm design and programming. Used as a vehicle for
teaching introductory computer science, our approach required
blending opportunities for individual artistic expression with a
traditional Java-based CS1 scope and sequence. The
curriculum follows a standard CS1 course, but instead of
solving for roots of polynomials, simulating gas station/cash
registers, or implementing well-known algorithms and
techniques, our labs provide avenues for highly individual

creative expressions to produce artwork, interactive
multimedia, data visualizations, and games.

2.1 Scope and Sequence
The CS1 scope and sequence shown in Table 1 is a variation of
an Objects Gently approach to teaching programming with
Java [7]. Object-oriented concepts are introduced neither at the
beginning or the end of the semester.

Programming Concepts Creative Computation Technique
What is programming Built-in drawing functions;

primitive shapes, coordinate
systems, creative coding principles

Variables, data types,
expression

Drawing in scale, proportional
distance and size to a vanishing
horizon specified by a y-variable

Mouse/keyboard interactions Shapes drawn via mouse clicks
Control structures: loops and
conditionals

Use of simple iterations to draw
many shapes
Use of conditionals in simple
simulations: ball drop, bouncing
ball

Writing functions with control
structures, randomization

Parameterized shape drawing:
location, size, color etc.;
Randomize display

Simple objects, super and
subclasses, object instantiation
vs class definition

Shapes modeled as objects: data
fields store parameters, methods
implement rendering and
animation, dynamic instances
generated by mouse click

One dimensional arrays Complex scene with many
shapes(objects) stored in arrays

Math applications: polar
coordinates, trigonometry,
rotational geometry

Mandala art, complex
abstract/geometric design,
composition of polygons, stars and
line strings, creative aesthetics

OOP principles, inheritance,
abstract classes and interfaces

Collaborative project with generic
object types, instructor provides
interface, students contribute sub
classes

Manipulating two dimensional
arrays

Image processing, Game of Life,
tiling and tessellation

Recursion, recursive functions Procedural art (e.g. fractals), L-
systems

Data sets, data mining, data
visualization, strings and files

Visually manipulate string
Visualization techniques

Table 1: Creative Computation Scope and Sequence

Exercises consist of a sequence of programming projects in
which students individually or collaboratively construct a work
of art, ranging from still graphics as shown in Figure 1, to data
visualizations and interactive games. For example, to teach
object inheritance, each student is asked to create a subclass of
a sea-creature interface/abstract class. The hierarchy is
combined into a single project instantiating the contributed
subclasses in a creature aquarium. Every exercise has a well-
defined basic part and offers students the opportunities to
explore open-ended creative projects. Students take ownership

 3

of their work. As a consequence, no two submitted projects are
the same, and plagiarism is visually obvious.

2.2 Creative Computation in Processing
Our approach follows in the footsteps of John Maeda, who is
both a formally trained artist and computer scientist. Inventor
of the programming environment Design by Numbers [9], a
precursor to Processing, he pioneered an approach to “creative
coding” that radically re-contextualized computer code–from
an applied math notation to a creative medium, on par with
charcoal, paint, clay, etc. Creative coding is an exploratory and
aesthetically driven approach, where students build visual
designs and artworks iteratively as they expand their projects.

Our curriculum assumes use of the Processing IDE. It should
be stressed that this is not a curriculum to learn Processing, but
rather a traditional CS1 – introduction to programming,
problem solving and foundations of computer science utilizing
the rich and friendly graphics library of Processing. It can be
taught in any programming language with a mature graphics
API.

Processing is built on top of Java with a simplified syntax and
an API that focuses on graphics/media programming. It is a
robust and full-featured language that has use both in the
classroom and beyond; it is used widely in industry and
growing quickly in popularity. It supports code writing in Java,
Python and JavaScript. A Processing project is developed in
Java or Python in a simple IDE that dispenses with the
complexity of creating a complex object structure in Java or
mastering library imports in Python. Within the last two years
P5.js 3 provides a JavaScript web-supporting framework in
which to write Processing functions using JavaScript syntax.
Our CS1 curriculum is implemented entirely in the Java
version to align with the AP CS A and traditional Java based
curricula. Sample code in our repository is entirely in Java,
however lab assignments can be adapted to either JavaScript or
Python to accomplish the learning goals stated in the materials.
We also have a successful adaption of our curriculum in C++
with openFrameworks4.

3 CURRICULUM ADAPTION
The efficacy of the Creative Computation approach comes
from a series of opportunities to experiment with how the
curriculum as a whole, and in part, could be adapted by a range
of institutions. Through initial deployment in two
undergraduate institutions and two high schools, a series of
short-duration workshops introduced educators to the
curriculum and pedagogy. Through mini-grants, nine
institutions adapted the curriculum and provided qualitative

3 P5js.org P5js.org
4 openframeworks.cc/

analysis of results to an external evaluator and are summarized
here.

3.1 Initial Undergraduate Implementation
The curriculum outlined above has been in place within
undergraduate introductory courses at Bryn Mawr College,
Bryn Mawr, PA and Southern Methodist University, Dallas,
TX for the past eight years.

Bryn Mawr Collge (BMC) is a small, all-women's liberal arts
college in the suburbs of Philadelphia that enrolls 1,300
undergraduates. BMC teaches and values critical, creative and
independent habits of thought and expression in an
undergraduate liberal arts curriculum for women. The
Computer Science Department offers a B.A. in Computer
Science as well as a minor in Computer Science and in
Computational Methods.

Southern Methodist University (SMU) is a private university
of 11,000 students (6,000 undergraduates) near the vibrant
heart of Dallas, TX. SMU offers nationally competitive
undergraduate and graduate CS and Engineering programs to a
larger and more conventional student body. The Creative
Computation Program is supported through both the School of
the Arts and the Department of Computer Science and
Engineering housed in the School of Engineering and offers
degrees in both Computer Science and Computer Engineering.

In both institutions Creative Computation was developed and
adapted to fit the local intellectual culture. Over a dozen
different instructors not associated with the grant have
successfully offered our curriculum more than twenty times.
See www.cs.brynmawr.edu/visual for more information.

3.2 Initial High School Implementation
As a curriculum intended to support the bridge from high
school to college, a natural consequence was to investigate
how it could be adapted to the cultures of high school. Two
high schools were initially selected [14]. The courses were
taught in these two schools that are at the extreme end of the
spectrum of high school cultures, using pedagogy that is similar in

Figure 1: Student artwork

the emphasis on project work, but markedly different in use of
materials and presentation style. Sidwell Friends School (SFS) is
a private coeducational PK-12 Quaker school in Washington,
DC, in which computer science is taught entirely through a
project-based lab with heavy emphasis on student-centered
inquiry. James Martin High School (MHS) is a large urban
public school in Texas that enrolls over 3300 students in
grades 9-12, where computer science instruction models
traditional high school mathematics instruction. As a large
public high school that accommodates a diverse population
with a full range of socio-economic needs, expectations for
achievement require significant reinforcement via extensive
use of highly structured materials. The computer science
program at MHS is targeted toward Advanced Placement and
formal lecture is reinforced through worksheets and exercises
that lay the groundwork for structured project assignments.
The participant teachers in both schools successfully adapted
the college-level creative computation model to the following
courses: as in [14]:

• An introduction to computer science course that starts with 4
weeks of Python following by Creative Computation with
Processing. The course covers materials traditionally
associated with CS1 with an introduction to classes but
without inheritance.

• An introduction to computer science course that uses
Creative Computation with Processing exclusively and
covers material traditionally associated with CS0.

• An advanced computer science course that parallel
expectations for a traditional CS1/CS2 experience
exclusively taught with Creative Computation in Processing.

• An AP CS course that requires students to sit for the AP
exam. Creative Computation projects are used intermittently
because the test is not contextualized to the arts, but uses
draws from a broad spectrum of applications.

• An Artificial Intelligence and Game Design course that has
evolved into a significant example of Creative Computation
that goes beyond the fine arts.

• An advanced computer science class that covers material
traditionally found in CS2 as well as providing opportunities
for kinesthetic game design.

3.3 Summer Workshops
In 2014, a four-day summer workshop was held at Bryn Mawr
College5. There were fifteen participants: seven high school
teachers and eight college faculty. Five public and two private
high schools were represented including a leading K-12 school
for students with learning disabilities. The college faculty
included a large research university, two small private liberal
arts colleges, as well as a public university and two community

5 http://cs.brynmawr.edu/visual/bmcworkshop.html.

colleges. Feedback from participants was overwhelmingly
positive. Five contributed projects to our repository, and all but
one indicated plans to adapt the curriculum into their
programs.

In 2015, we held a second four-day summer workshop at
Soutern Methodist University. Despite a budget limited to
twenty participants, thirty-three people were accepted into the
workshop; twenty-eight attended. Of those twenty-eight,
twenty-one were faculty members: twelve high school teachers
and nine professors from colleges and universities around the
country. Among the teachers, nine were from public schools,
and three from private schools. The college faculty members
ranged from a well-known research university, a small private
liberal arts college, three public universities, and an Ivy League
university. There were also non-faculty participants: tech
industry and non-profit organizations that run extracurricular
and youth summer camps for computing. All of the
participants either indicated intention to adopt the Creative
Computation approach, or were already teaching with
Processing in some form and intended to adapt our curricular
materials and approaches.

3.4 Mini-grant Institutions
Between 2014 and 2017 instructors from ten different institutions
were awarded mini-grants to adapt and implement the Creative
Computing curriculum in their own classrooms. Nine of these
filed final reports summarizing successful implementation, one
initial grantee withdrew before implementation, due to local
institutional staffing and course scheduling difficulties.
Additionally, an external evaluator carried out pre-post interviews
and student surveys on all these courses.

The curriculum was implemented at four high schools (2 public, 2
private), a public 2-year community college, a private 4-year
liberal arts college and three 4-year universities (2 public, one
private). One college course was offered online for both high
school and college students. The four major regions, as defined by
the US Census, were represented: one each in the Northeast and
South (both high school), three in the West (two high school, one
undergraduate) and four in the Midwest (four undergraduate, one
on-line allowing high school student to register).

The courses that were offered spanned a full range of traditional
levels in computer science and in introductory media arts.
Introductory computer science is comparatively new and lacks a
consensus on foundation.6 As a metric for evaluating the efficacy
of Creative Computation we use the following generally accepted
curricular foci to categorize the courses taught in the mini-grant
program.

6 See http://www.acm.org/education/curricula-recommendations for CS0 and CS1,
http://www.exploringcs.org/ for Pre-AP HS – e.g Exploring Computer Science,
https://apcentral.collegeboard.org/courses for AP CS A and AP CS Principles. We
have not found a professional society standard for Media Arts programming.

 5

• Pre-AP High School: As exemplified by the nationally
recognized Exploring Computer Science.

• AP CS principles/CS0: CS0 is considered a foundations
course for non-majors or entering college CS majors with no
background in computer science. The AP CS Principles
course is intended to articulate with that college level
offering.

• AP CS A/CS1: The traditional computer science course for
entering CS majors.

• Media Arts Coding: A course offered in Digital Arts
programs that introduces programming.

The high school courses were titled: AP CS A, AP CS principles,
Introduction to Programming (Pre-AP), Pre-AP CS A (three
instances).

The undergraduate level courses were titled: Applied Logic (A
prerequisite for CS1, not a CS0), Beyond Photoshop (A CS0
course), Critical Games (A media arts course), CS1.

Implementation ranged from modules (in the AP CS A courses) to
full semester adaption of the creative arts projects curriculum
outlined in section 2 for courses at the pre-AP and AP Principles
High School level, and for all of the undergraduate courses as pre-
CS1 (e.g. Logic and CS0), CS1, and for Media Arts.

Our initial efforts at both the college and especially the high
school level identified a broad spectrum of pedagogical styles
from highly structured to intensively inquiry-based. The mini-
grant offerings, not surprisingly fell in the middle without clear
metrics for distinguishing between them. They all did however
include the following:

• Short lecture and resource materials to introduce
programming (e.g. variables, control structures) and creative
arts concepts.

• Practice via short-guided assignments that allowed for
individual creativity.

• Opportunities for large project work with a focus chosen by
the student.

The remaining sections summarize outcomes and recommend
changes for curricular and teacher professional development.

4 OUTCOMES
The major expected outcome of this work was that Creative
Computation as an adapted curriculum can successfully meet a
broad range of curricular goals at the bridge between high school
and introductory college computer science. A key element is the
emphasis on project work in which students can express artistic
creativity and create an individual agenda for project goals. This
project also demonstrated that the traditional CS1/CS AP A
curriculum structure is viable as a vehicle for introductory
computing, provided there is contextualization, in this case media
arts. Quotes from mini-grant participants provide insight:

We have been teaching [CS 0] for 5 years. This was by far the most
engaged group of students we have worked with; the combination of
technical rigor, criticality, and contemporary
themes/materials/topics seems to have inspired and encouraged an
unusually open and responsive group dynamic.  	

These creative tasks allowed for both computational and “artistic”
success. Students could produce something that was simplistic in
terms of code, but successful in terms of humor or emotional appeal.
This allowed for a wonderful classroom climate in which students of
all levels felt capable of producing work they would be proud to
share with classmates.

A hoped for, but not necessarily expected outcome, was that the
short-duration workshop that exposed participants to a studio art
experience would support adaptation of our pedagogy to their own
needs. Evidence to that effect is that all of the mini-grant
participants reported that they successfully completed their course
and were going to continue using Creative Computation. Consider
this example:

Their projects and the process was a success, and one that I intend
to replicate after the AP test. The entire class became more
collaborative and kids were motivated not from a grade, but from
seeing something on the screen that they wanted to replicate. In
addition, it has been rare for students who do not know each other to
enter into a discussion. With this project, many were looking and
asking how to take their own projects to the next level. Many kids
who were checked out for most of the year, basically came back to
write more code than they did the entire year, and they were doing it
based on their own purpose-driven initiatives. I could hardly keep
them out of the computer lab. I would like to use this more next year
in all my classes, but in particular, AP Computer science just
because many kids find the current grind a bit more than they care to
take.

Unexpected outcomes did, of course, occur. The commitment to
NSF was to produce a workshop model and repository of material
resources. This proved inadequate. Each mini-grant participant
expressed a need for more mentorship with experts to expand their
computing and artistic skills, to brainstorm pedagogy, and to
identify curricular connections. An attempt to create an online
community of our own during the mini-grant course execution
period did not generate sufficient traffic to engage the group.
However, all participants did articulate goals to pursue Creative
Computation further through existing resources.

We address the question of what merits claiming success. In this
paper we do not list statistics of diversity, nor increased
enrollments, nor attitudinal outcomes. Seven years ago when this
project started, increasing enrollment was seen as a bell-weather
of success. But interest in computer science has exploded with
enrollments stretching teaching resources in both high school and
undergraduate programs. Consequently, there is no statistically
valid correlation between Creative Computation and increased
enrollment, nor, we suggest, can any contextualized approach
make that claim. Similarly statistics on who enrolls in
introductory computer science classes is not correlated with
successful curriculum. Schools on both sides of the bridge now

require computer science, often because of state mandates. In
institutions without an explicit requirement, due to lack of
teaching resources, students cannot enroll or are placed in over-
crowded classrooms. A companion paper will present a
methodology and conclusions on student affect. Consequently, we
report here on how the curriculum was successfully used by the
simple standard that teachers self-evaluated their success,
critiqued their short comings and articulated what they would
improve in the next round. Throughout, the reporting has been
consistently positive.

5 RECOMMENDATIONS
The AP CS Principles curriculum was intentionally developed to
address the shortcoming of the AP CS A – that it was inaccessible
to many students, with too much emphasis on the Java
programming language and not enough emphasis on core
computer science principles. The Creative Computation
curriculum illustrates that the depth of code development,
problem solving, and principles of software design explicit in the
CS1, AP CS A curricula can be taught in a manner that engages
students. Programming is essential to learning computer science,
but the coding must be purposeful. In the curriculum presented
here, that purposefulness comes from the emphasis on creative
arts. This speaks to a need for reconsideration of how foundations
of programming are introduced rather than depth of knowledge of
those foundations. While we promote creative art as a vehicle for
the how, this is certainly not the only framework, but we do assert
that the depth of knowledge should not be minimized.
Programming, problem solving, and software design are skills
that, like any other skill, need to be practiced and mentored.
Consequently, our recommendation on both sides of the bridge is
to keep the depth of knowledge, but to identify how standard
curricula can be adapted to the local goals, objectives and
projected outcomes.

Simple adoption of curriculum requires teacher professional
development. Adapting curriculum to local goals requires
expertise in both the subject area and the pedagogy. This project
illustrated that minimal training via short duration workshop and
static online materials was sufficient to bootstrap adaption. But a
significant outcome of the mini-grant program was the hunger
among all the participants for more – of everything. A compelling
question for the computer science community is how to provide
those resources in a way that engages a community – that
provides the kind of art studio approach we promoted to the very
hard task of teacher professional development.

ACKNOWLEDGMENTS
This project is supported in part by grants from The National
Science Foundation (DUE-0942626, DUE-0942628, DUE-
1323463, DUE-1323305, CCF-0939370, and CCF-1140489).

REFERENCES
[1] Jessica D. Bayless and Sean Strout. Games as a “Flavor”

of CS1. In proceedings of SIGCSE 2006. ACM Press
2006.

[2] Robert E. Beck, Jennifer Burg, Jesse M. Heines, and Bill
Manaris. Computing and Music: A Spectrum of Sound.
Special Session, SIGCSE 2011. Dallas, TX, March 2011.

[3] Cassel, L. and Wolz, U Interdisciplinary Computing,
Successes and Challenges. In Proceedings of SIGCSE
2013. ACM Press 2013.

[4] Ira Greenberg, Deepak Kumar and Dianna Xu. Creative
Coding and Visual Portfolio for CS1. In Proceedings of
SIGCSE 2012. ACM Press 2012.

[5] Ira Greenberg, Dianna Xu, and Deepak Kumar. Creative
Coding and Generative Art in Processing 2.0. friends Of
ed/Apress 2013.

[6] Mark Guzdial. Introduction to computing and
programming with Python: A Multimedia Approach.
Prentice-Hall, 2004.

[7] Elliot Koffman, E. and Ursula Wolz, CS1 using Java
language features gently. In Proceedings of
SIGCSE/ITiCSE 1999. ACM Press 1999.

[8] Deepak Kumar, Doug Blank, Tucker Balch, Keith
O'Hara, Mark Guzdial, Stewart Tansley, Engaging
Computing Students with AI and Robotics. Symposium
on Using AI to Motivate Greater Participation in
Computer Science, 2008.

[9] John Maeda Design by Numbers, MIT Press 2001.
[10] Jay Summet, Deepak Kumar, Keith O’Hara, Daniel

Walker, Lijun Ni, Doug Blank, and Tucker Balch.
Personalizing CS1 with Robots. In Proceedings of ACM
SIGCSE 2009. ACM Press 2009.

[11] Ursula Wolz, Christopher Ault and Teresa Nakra,
“Teaching Game Design through Cross-Disciplinary
Content and Individualized Student Deliverables”, The
Journal of Game Development, adapted based on
invitation from presentation at the 2nd Annual Microsoft
Academic Days Conference on Game Development ,
February 22 - 25, 2007

[12] Ursula Wolz, Kim Pearson, S.Monisha Pulimood,
Meredith Stone, Mary Switzer. Computational Thinking
and Expository Writing in the Middle School: A novel
approach to broadening participation in computing,
Transactions on Computing Education, 2011, Volume 2,
article 9.

[13] Dianna Xu, Douglas Blank, and Deepak Kumar. Games,
Robots and Robot Games: Complementary Contexts for
Introductory Computing Education. In Proceedings of
Third International Conference on Game Development
in Computer Science Education (GDCSE'08), 2008.

[14] Dianna Xu, Aaron Cadle, Darby Thompson, Ursula Wolz,
Ira Greenberg, and Deepak Kumar. 2016. Creative
Computation in High School. In Proceedings of the 47th
ACM Technical Symposium on Computing Science
Education (SIGCSE '16). ACM, New York, NY, USA, 273-
278. DOI: https://doi.org/10.1145/2839509.2844611

